Forecasting stock returns with large dimensional factor models
نویسندگان
چکیده
We study equity premium out-of-sample predictability by extracting the information contained in a high number of macroeconomic predictors via large dimensional factor models. compare well-known model with static representation common components Generalized Dynamic Factor Model, which accounts for time series dependence components. Using statistical and economic evaluation criteria, we empirically show that Model helps predicting premium. Exploiting link between business cycle return predictability, find accurate predictions also combining rolling recursive forecasts real-time.
منابع مشابه
infinite dimensional garch models
مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...
15 صفحه اولForecasting Stock Returns Using Genetic Programming in C++
This is an investigation of forecasting stock returns using genetic programming. We first test the hypothesis that genetic programming is equally successful in predicting series produced by data generating processes of different structural complexity. After rejecting the hypothesis, we measure the complexity, of thirty-two time series representing four different frequencies of eight stock retur...
متن کاملForecasting for Financial Stock Returns Using a Quantile Function Model
In this talk, we introduce a newly developed quantile function model that can be used for estimating conditional distributions of financial returns and for obtaining multi-step ahead out-of-sample predictive distributions of financial returns. Since we forecast the whole conditional distributions, any predictive quantity of interest about the future financial returns can be obtained simply as a...
متن کاملForecasting Stock Returns Based on Event Detection from Twitter
The growing number of Twitter users makes it a valuable source of information to study what is happening right now. Many times users make use of Twitter for personal or professional reasons or even in order to report events of real life. The objective of this thesis is to develop a system capable of predicting stock returns of the DJIA based on tweets posted by a financial community. In a first...
متن کاملForecasting Stock Returns using Evolutionary Artificial Neural Networks
Several models and techniques have been used to forecast stock returns. Some previous researches have applied Evolutionary Artificial Neural Networks to predict stocks prices. The most of previous researches have been concentrated on either predict stock indexes or trends rather than individual stock returns. In this paper, we use the adaptive EANNs to predict individual stock returns based on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Empirical Finance
سال: 2021
ISSN: ['0927-5398', '1879-1727']
DOI: https://doi.org/10.1016/j.jempfin.2021.07.009